

Dynamical Downscaling of Climate Projection Data

Akihiko Murata

Meteorological Research Institute / Japan Meteorological Agency

Jan 10, 2024

Webinar Series on Climate Change Projection for Disaster Risk Reduction in Asia-Pacific Region

Overview of dynamical downscaling

Practical examples of dynamical downscaling

Analyses for present climate

Analyses for future climate

Research program: SENTAN

1. Overview of dynamical downscaling

What is downscaling?

Purpose

To project future climate on regional and local scales

20-km resolution

2-km resolution

Two types

Statistical downscaling: Based on statistical knowledge
 Dynamical downscaling: Based on numerical simulations 4

Regional Climate Model (RCM)

- Similar to numerical prediction model for weather forecast
- But for regional- and local-scale climate (not weather)

10

2

Present-day climate

Future climate (e.g., the end of 21C)

Experimental design

Numerical Model:

NonHydrostatic Regional Climate Model (NHRCM; Sasaki et al. 2008), based on Japan Meteorological Agency NonHydrostatic Model (JMA-NHM; Saito et al. 2006)

Downscaling methods

Scenario in terms of greenhouse gases

- Shared Socioeconomic Pathways (SSP)
- Representative Concentration Pathways (RCP)

Time sliced

e.g., Around the end of this century: 2080-2100

Using high-speed supercomputer

e.g., Earth Simulator

Earth Simulator

http://www.jamstec.go.jp/es/jp/output/ gallery/images/es3/org/002.jpg

2. Practical examples of dynamical downscaling

2-1 Analyses for present climate2-2 Analyses for future climate

2-1 Analyses for present climate

Remarks:

- Climate simulation is different from weather forecast
- In general, date in climate simulations does not represent real date, month, and year
- Not possible to compare model and observed results for specific date, month, and year
- Calculation of long-term mean
 - 20 years (30 years) or so
 - Compare model climate with observed one
 - Both 20-years mean
- Therefore, calculate long-term mean first

Calculation of monthly, seasonal, and annual mean

(20-years mean of) Monthly mean

10

Similarly ...

(20-years mean) of Seasonal mean
 DJF, MAM, JJA, SON, and so on
 (20-years mean of) Annual mean

Validate simulated mean values

Using observational dataFor example: Station data

Modeled values for comparison
 At the grid point nearest to an observational point
 Bias, RMSE, and Correlation

Difference between model and observational results

Surface air temperature

2-2 Analyses for future climate

Remarks:

- Climate simulation is different from weather forecast
- In general, date in climate simulations does not represent real date, month, and year
- Not possible to compare model results (present and future) for specific date, month, and year
- Calculation of long-term mean
 - 20 years (30 years) or so
 - Compare model future climate with present one
 - Both 20-years mean
- Therefore, calculate long-term mean first

Difference between future and present surface air temperature

Present

Future

Future - Present

Difference between future and present precipitation

Present

Future - Present

3. Research program: SENTAN

Special scientific programs

Sponsored by Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan

KYOUSEI project (FY2002-2006)
KAKUSHIN program (FY2007-2011)
SOUSEI program (FY2012-2016)
TOUGOU program (FY2017-2021)
SENTAN program (FY2022-2026)

文部科学省 MEXT

> MINISTRY OF EDUCATION, CULTURE, SPORTS, CE AND TECHNOLOGY-JAPAN

SENTAN program web

Our goal is to conduct application-oriented research to meet the needs of different users and contribute to the realization of a decarbonized society.

https://www.jamstec.go.jp/sentan/eng/

Four research themes

Theme No. 3: Increasing the sophistication of climate change projections around Japan

RESEARCH THEME an integrated study system with four cooperative study area issue			
Area Theme 1 Predictive understanding of Earth system changes based on physical evidence READ MORE >	Area Theme 2 Biogeochemical modeling and climate simulations for carbon budget assessment	Area Theme 3 Increasing the sophistication of climate change projections around Japan	Area Theme 4 Development of an integrated hazard projection model
Theme 1, 2 PO (Program Officer) Toshiki Iwasaki Special Advisor to MEXT Graduate School of Emeritus Professor Area Theme 1 Predictive understanding of Earth system changes based on physical evidence Atmosphere and Ocean Research Institute, The University of Tokyo Area Representative Masahiro Watanabe Professor, Atmosphere and Ocean Research Institute, The University of Tokyo	Area Theme 2 Biogeochemical modeling and climate simulations for carbon budget assessment Japan Agency for Marine-Earth Science and Technology (JAMSTEC) Area Representative Michio Kawamiya Director, Japan Agency for Marine- Earth Science and Technology (JAMSTEC)	Theme 3, 4 PO (Program Officer) Elichi Nakakita Special Advisor to MEXT Disaster Prevent Professor and Director Area Theme 3 Increasing the sophistication of climate change projections around Japan Japan Meteorological Business Support Center (JMBSC) Area Representative Izuru Takayabu Principal Investigator, Japan Meteorological Business Support	ion Research Institute, Kyoto University Area Theme 4 Development of an integrated hazard projection model Disaster Prevention Research Institute, Kyoto University Area Representative Nobuhito Mori Professor, Disaster Prevention Research Institute, Kyoto University

Area theme No. 3 of SENTAN program

Area Theme 3

Increasing the sophistication of climate change projections around Japan

Japan Meteorological Business Support Center (JMBSC)

Area Representative

Izuru Takayabu

Principal Investigator, Japan Meteorological Business Support Center

Area subjects

- Development of projection system and analysis of mechanism for climate change around Japan
- Creating climate change projection information and elucidating extreme event mechanisms for promoting regional and basin scale adaptation measures
- Creation of high-accuracy climate projection datasets for vulnerable regions in the world

Promotion of projection

· products use and user communication

Participating organizations

Hokkaido University, Tohoku University, JAMSTEC, Nagoya University

Three sub-themes Sub-theme No. 3: Creation of high-accuracy climate projection datasets for vulnerable regions in the world International collaboration through inviting researchers to MRI

MEXT-Program for The Advanced Studies of Climate Change Projection(SENTAN)

International collaboration

High-resolution climate projection datasets for their countries have been made by using a regional climate model, called NHRCM.

5-km and 2-km horizontal resolutions

The datasets can be used for climate change impact assessment and adaptation strategies

An invited researcher

(By courtesy of Prof Mishra)

Model domains

Studies for each country

- Arpornrat, T., S. Ratjiranukool, P. Ratjiranukool, and H. Sasaki, 2018: Evaluation of southwest monsoon change over Thailand by high-resolution regional climate model under high RCP emission scenario, J. Phys.: Conf. Ser., 1144, 012112.
- Cruz, F. T., H. Sasaki, and G. T. Narisma, 2016: Assessing the sensitivity of the Non-Hydrostatic Regional Climate Model to boundary conditions and convective schemes over the Philippines. J. Meteor. Soc. Japan, 94, 165–179.
- Cruz, F. T, and H. Sasaki, 2017: Simulation of present climate over Southeast Asia using the Non-Hydrostatic Regional Climate Model. SOLA, 13, 13–18.
- Jamaluddin, A. F., F. Tangang, J. X. Chung, L. Juneng, H. Sasaki, and I. Takayabu, 2018: Investigating the mechanisms of diurnal rainfall variability over Peninsular Malaysia using the non-hydrostatic regional climate model. Meteor. Atmos. Phys., 130, 6, 611–633.
- Kieu-Thi, X., H. V. U.-Thanh, T. Nguyen-Minh, D. Le, L. Nguyen-Minh, I. Takayabu, H.Sasaki, and A. Kitoh, 2016: Rainfall and tropical cyclone activity over Vietnam simulated and projected by the Non-Hydrostatic Regional Climate Model – NHRCM. J. Meteor. Soc. Japan, 94A, 135–150.
- Ngai, S. T., H. Sasaki, A. Murata, M. Nosaka, J. X. Chung, L. Juneng, Supari, E. Salimun, and F. Tangang, 2020: Extreme rainfall projections for Malaysia at the end of 21st century using the high resolution non-hydrostatic regional climate model (NHRCM), SOLA, 16, 132–139.
- Mau, N. D., N. M. Truong, H. Sasaki, and I. Takayabu, 2017: Rainfall projection for seasonal rainfall over Vietnam by the end of 21st century under RCP8.5 scenario by the NHRCM model. Vietnam Journal of Hydrometeorology, pp 7–13.
- Mau, N. D., H. Sasaki, and I. Takayabu, 2018: A study of seasonal rainfall in Vietnam at the end of 21st century according to the Non-Hydrostatic Regional Climate Model, Vietnam Journal of Science, Technology and Engineering, 60, 3, 89–96.

- Overview of dynamical downscaling
- Practical examples of dynamical downscaling
 - Analyses for present climate
 - Analyses for future climate
- Research program: SENTAN
 - Dynamical downscaling for their countries using a non-hydrostatic RCM, called NHRCM, has been conducted
 - High-speed computer system, called the Earth Simulator, can be used